¹⁰⁰Tc electron capture branching ratio

D. Melconian, S. K. L. Sjue,¹ I. Ahmad,² A. Algora,³ J. Äystö,⁴ K. S. Dryckx,¹ T. Eronen,⁴ A. García,¹ S. A. Hoedl,¹ A. Jokinen,⁴ I. D. Moore,⁴ H. Penttilä,⁴ S. Rahaman,⁴ J. Saastamoinen,⁴

H. E. Swanson,¹ S. Triambak^{1,5} and C. Weber⁴

¹Department of Physics, University of Washington, Seattle, WA 98195

²Argonne National Laboratory, Argonne, IL 60439

³IFIC CSIC-University, Valencia, Spain

⁴Department of Physics, University of Jyväskylä, Jyväskylä, Finland

⁵Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada

The motivation to measure the electron-capture (EC) branch of ¹⁰⁰Tc is two-fold: ¹⁰⁰Mo is a neutrinoless double- β decay (0v $\beta\beta$) candidate [1, 2] for which the ¹⁰⁰Tc EC branch is needed for matrix element calculations; and inverse EC on ¹⁰⁰Mo has been proposed [2] as a potential detector for observing charged-current neutrinos from the pp chain. The main motivation at this time, however, is 0v $\beta\beta$ because there is no concrete plans to develop ¹⁰⁰Mo as a neutrino detector due to the large mass (\approx 3 tons) which would be required. To date, only one measurement of the EC branching ratio has been published which has a 50% uncertainty on its value: (1.8±0.9)×10⁻⁵ [3].

A schematic diagram of the setup we used at the IGISOL facility in Jyväskylä, Finland is shown in Fig. 1. Using the Penning-trap system JYFLTRAP, contaminants in the beam (most notably ⁹⁹Tc and

¹⁰⁰Ru) were removed. The purified ¹⁰⁰Tc beam was collimated before entering a cylindrical cavity bored into a cube of plastic scintillator to ensure all the activity was implanted onto a foil near the opposite end of the cube. Imposing a veto from signals in the scintillator allowed us to suppress the dominant (= 99.999%) β^{-} decay branch to ¹⁰⁰Ru by >90%. A planar Ge detector observed the xrays following the EC of ¹⁰⁰Tc with very little attenuating material between it and the activity (3 mm of scintillator and 120 µm of Be). A preliminary x-ray spectrum from the

Figure 1. Schematic diagram of the detector setup at the end of the IGISOL/JYFLTRAP beamline.

experiment is shown in Fig. 2. The dominant peak at 19.2 keV originates from K_{α} x-rays following the decay to ¹⁰⁰Ru; without the β veto, this peak would overwhelm the small ¹⁰⁰Mo x-ray peak at 17.4 keV. We calculate the EC branching ratio based on the ratio of the area of this small – but clearly resolved – peak to that of the 540 keV γ ray which follows the β^{-} decay. Although analysis of the data continues, preliminary results indicate a branch of 1×10^{-5} with an uncertainty of $\approx 20\%$. The dominant sources of

uncertainty are expected to be statistics in the ¹⁰⁰Mo peak and our understanding of the relative efficiency of the Ge detector between 17 keV and 540 keV.

Figure 2. Simplified decay scheme (inset) and x-ray spectrum from 100 Tc decay.

- [1] R. Arnold et al., Phys. Rev. Lett. 95, 182302 (2005).
- [2] H. Ejiri et al., Phys. Rev. Lett. 85, 2917 (2000).
- [3] A. García et al., Phys. Rev. C 47, 2910 (1993).